A Ground-Nesting Galliform’s Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds
نویسندگان
چکیده
The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.
منابع مشابه
Nesting songbirds assess spatial heterogeneity of predatory chipmunks by eavesdropping on their vocalizations.
1. Information benefits organisms living in a heterogeneous world by reducing uncertainty associated with decision making. For breeding passerines, information reliably associated with nest failure, such as predator activity, can be used to adjust breeding decisions leading to higher reproductive success. 2. Predator vocalizations may provide a source of current information for songbirds to ass...
متن کاملPresent and future thermal environments available to Sharp-tailed Grouse in an intact grassland
Better understanding animal ecology in terms of thermal habitat use has become a focus of ecological studies, in large part due to the predicted temperature increases associated with global climate change. To further our knowledge on how ground-nesting endotherms respond to thermal landscapes, we examined the thermal ecology of Sharp-tailed Grouse (Tympanuchus phasianellus) during the nesting p...
متن کاملInadequate thermal refuge constrains landscape habitability for a grassland bird species
Ecologists have long recognized the influence that environmental conditions have on abundance and range extent of animal species. We used the northern bobwhite (Colinus virginianus; hereafter bobwhite) as a model species for studying how microclimates serve as refuge against severe weather conditions. This species serves as an indicator or umbrella species for other sensitive ground-nesting, gr...
متن کاملUsing a historic drought and high‐heat event to validate thermal exposure predictions for ground‐dwelling birds
Deviations from typical environmental conditions can provide insight into how organisms may respond to future weather extremes predicted by climate modeling. During an episodic and multimonth heat wave event (i.e., ambient temperature up to 43.4°C), we studied the thermal ecology of a ground-dwelling bird species in Western Oklahoma, USA. Specifically, we measured black bulb temperature (Tbb) a...
متن کاملUncertainty in fundamental natural frequency estimation for alluvial deposits
Seismic waves are filtered as they pass through soil layers, from bedrock to surface. Frequencies and amplitudes of the response wave are affected due to this filtration effect and this will result in different ground motion characteristics. Therefore, it is important to consider the impact of the soil properties on the evaluation of earthquake ground motions for the design of structures. Soil ...
متن کامل